Data collection

3993 reflections with
F > 0
$R_{\rm int} = 0.019$
$\theta_{\rm max} = 22.5^{\circ}$
$h = 0 \rightarrow 16$
$k = 0 \rightarrow 13$
$l = -18 \rightarrow 18$
3 standard reflections
frequency: 167 min
intensity decay: none

Refinement

Refinement on F	$\Delta \rho_{\rm max} = 0.48 \ {\rm e} \ {\rm \AA}^{-3}$
R = 0.024	$\Delta \rho_{\rm min} = -0.43 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.022	Extinction correction:
S = 2.90	Larson (1970)
3993 reflections	Extinction coefficient:
417 parameters	103 (2)
H atoms: see below	Scattering factors from Inter
Weighting scheme based	national Tables for X-ray
on measured e.s.d.'s	Crystallography (Vol. IV)
$(\Delta/\sigma)_{\rm max} = 0.034$	

Table 1. Selected geometric parameters (Å, °)

Mo101	2.352 (3)	Mo4016	1.707 (3)
Mo1—O2	1.937 (3)	Mo4-017	1.708 (3)
Mo1-03	2.307 (3)	Mo4-018	2.224 (3)
Mo1-04	1.905 (3)	Mo4019	1.950(3)
Mo1-05	1.703 (3)	Mo5-01	2.347 (3)
Mo1-06	1.708 (3)	Mo5-02	1.943 (3)
Mo2—O3	2.405 (3)	Mo5-015	2.197 (3)
Mo2—O4	1.903 (3)	Mo5-019	1.937 (3)
Mo207	2.211 (3)	Mo5O20	1.706 (3)
Mo2—O8	1.973 (3)	Mo5-021	1.701 (3)
Mo2—O9	1.698 (3)	P1-03	1.535 (3)
Mo2—O10	1.708 (3)	P1-011	1.509 (3)
Mo307	2.367 (3)	P1-015	1.556 (3)
Mo3—O8	1.933 (3)	P1—C1	1.799 (4)
Mo3011	2.223 (3)	P201	1.544 (3)
Mo3-012	1.910(3)	P207	1.549 (3)
Mo3-013	1.703 (3)	P2018	1.508 (3)
Mo3-014	1.725 (3)	P2-C3	1.786 (4)
Mo4-012	1.907 (3)	C1—C2	1.519 (6)
Mo4-015	2.376 (3)	C3—C4	1.521 (6)

H atoms were located geometrically (N—H and C—H = 0.95 Å) and from difference maps for the O31 atom. The H atoms of the O32 water molecule were not located.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: RC85 (Baird, 1985). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: CRYS-TALS (Watkin, Prout, Carruthers & Betteridge, 1996). Molecular graphics: CAMERON (Watkin, Prout & Pearce, 1996). Software used to prepare material for publication: CRYSTALS.

The authors thank the National Science Foundation for partial funding.

References

- Baird, P. D. (1985). RC85. Data Reduction Program. Chemical Crystallography Laboratory, University of Oxford, England.
- Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Gérand, B., Nowogrocki, J., Guenot, J. & Figlarz, M. (1979). J. Solid State Chem. 29, 429-434.
- Harrison, W. T. A., Dussack, L. L. & Jacobson, A. J. (1995). Inorg. Chem. 34, 4774–4779.
- Kortz, U. & Pope, M. T. (1995). Inorg. Chem. 34, 2160-2163.
- Kwak, W., Pope, M. T. & Scully, T. F. (1975). J. Am. Chem. Soc. 97, 5735–5738.
- Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Stalick, J. & Quicksall, C. O. (1976). Inorg. Chem. 15, 1577-1584.
- Watkin, D. J., Prout, C. K., Carruthers, R. J. & Betteridge, P. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, Oxford, England.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

Acta Cryst. (1997). C53, 202-204

Dichloro(η^5 -cyclopentadienyl)(phenylimido)vanadium(V)

MICHAEL C. W. CHAN,[†] JACQUELINE M. COLE,[‡] VERNON C. GIBSON[§] AND JUDITH A. K. HOWARD

Department of Chemistry, Science Laboratories, University of Durham, South Road, Durham DH1 3LE, England. E-mail: cole@ill.fr

(Received 4 April 1996; accepted 15 October 1996)

Abstract

The title compound, $[VCl_2(C_5H_5)(C_6H_5N)]$, contains vanadium in a tetrahedral coordination geometry, with the cyclopentadienyl (Cp) ligand occupying one of the four sites and showing an allyl-ene distortion. The V— N—C angle is 169.1 (4)°. The crystal packing involves C—H···Cl interactions, with H···Cl distances in the range 2.87 (5)–2.89 (4) Å.

Comment

The chemistry of the half-sandwich vanadium imido system has recently been investigated due to the isolobal

Lists of structure factors, anisotropic displacement parameters, atomic coordinates and complete geometry have been deposited with the IUCr (Reference: TA1123). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[†] Present address: Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong.

[‡] Present address: Institut Laue Langevin, BP 156, 38042 Grenoble CEDEX 9, France.

[§] Present address: Department of Chemistry, Imperial College, London SW7 2AY, England.

relationship between the [CpV(NR)] and $[Cp_2Ti]$ fragments (Buijink, Teuben, Kooijman & Spek, 1994; Chan, 1995). The title complex, (I), was prepared by the imido ligand exchange reaction between $[CpV(N'Bu)Cl_2]$ (Becker, Häusler & Preuss, 1987) and aniline.

The V—N1 distance of 1.653 (4) Å and the small deviation from linearity of the V—N1—C1 angle [169.1 (4)°] are typical for vanadium-terminal imido complexes (Mayer & Nugent, 1988) which exhibit multiple $p\pi$ - $d\pi$ interactions between the N and V atoms. The geometry around the metal centre is approximately tetrahedral due to the bulky nature of the Cp ring (Fig. 1). An allyl-ene distortion of this ring is evident (Table 1), with the metal displaced towards the C9 atom

Fig. 1. The structure of (I) showing 50% probability displacement ellipsoids.

Fig. 2. The packing viewed along the b axis, showing H···Cl intermolecular interactions.

which eclipses the V—N bond. The distance from the centroid of the ring to the V atom is 1.968(6) Å.

The packing, with alternating layers of Cp rings and interleaved phenyl groups, is shown in Fig. 2. The Cl1···H8ⁱ, Cl2···H6ⁱⁱ and Cl2···H10ⁱⁱ intermolecular distances [2.88 (6), 2.89 (4) and 2.87 (5) Å, respectively; symmetry codes: (i) $x, \frac{1}{2} - y, z - \frac{1}{2}$; (ii) $x, \frac{1}{2} - y, \frac{1}{2} + z$] are marginally less than the sum of the corresponding van der Waals radii (2.95 Å; Bondi, 1964); these secondary interactions presumably have a significant effect upon the observed packing arrangement.

Experimental

Aniline (0.16 ml, 1.77 mmol) was added to a solution of $[CpV(N'Bu)Cl_2]$ (0.46 g, 1.77 mmol) in 1,2-dichloroethane (60 ml) at 243 K. After warming to room temperature, the mixture was heated to 333 K and stirred for two weeks. All volatile components were then removed from the dark red solution under reduced pressure to leave a red solid. Recrystallization of the solid with pentane and subsequent cooling at 268 K gave very dark purple crystals [yield: 0.23 g (47%)]. Elemental analysis for C₁₁H₁₀Cl₂NV (278.05) found (required): C 47.46 (47.52), H 3.84 (3.63), N 4.69% (5.04%). IR data (Nujol, CsI, cm⁻¹): 3070 (w), 2730 (w), 1600 (m, *br*), 1455 (*s*), 1415 (*m*), 1260 (*s*), 1095 (*s*), 1020 (*s*), 865 (*m*), 800 (*s*), 700 (*m*), 510 (*w*), 465 (*w*). ¹H NMR data (250 MHz, CDCl₃, 298 K): 6.62 (*s*, 5H, C₅H₅), 6.7–7.2 (*m*, 5H, C₆H₅).

Crystal data

 $[VCl_2(C_5H_5)(C_6H_5N)]$ $M_r = 278.04$ Monoclinic $P2_1/c$ a = 13.641 (3) Å b = 7.0340 (10) Å c = 12.403 (2) Å $\beta = 94.66 (3)^\circ$ $V = 1186.1 (4) Å^3$ Z = 4 $D_x = 1.557 Mg m^{-3}$ D_m not measured

Data collection

Rigaku AFC-6S diffractometer ω scans with profile analysis (Lehmann & Larsen, 1974) Absorption correction: semi-empirical from ψ scans (North, Phillips & Mathews, 1968) $T_{min} = 0.839, T_{max} = 0.905$ 2821 measured reflections

Refinement

Refinement on F^2 R(F) = 0.0545 $wR(F^2) = 0.0905$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 24 reflections $\theta = 10.10-13.77^{\circ}$ $\mu = 1.251 \text{ mm}^{-1}$ T = 150 (2) KBlock $0.30 \times 0.25 \times 0.08 \text{ mm}$ Very dark purple

2098 independent reflections 1244 reflections with $I > 2\sigma(I)$ $R_{int} = 0.0487$ $\theta_{max} = 25^{\circ}$ $h = -16 \rightarrow 16$ $k = -8 \rightarrow 1$ $l = -1 \rightarrow 14$ 3 standard reflections every 150 reflections intensity decay: none

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0278P)^{2} + 0.0179P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$

$[VCl_2(C_5H_5)(C_6H_5N)]$

S = 0.994	$(\Delta/\sigma)_{\rm max} = -0.067$
2098 reflections	$\Delta \rho_{\rm max} = 0.405 \ {\rm e} \ {\rm \AA}^2$
166 parameters	$\Delta \rho_{\min} = -0.351 \ e$ A
H-atom coordinates refined;	Extinction correction
$U(H) = 1.2U_{eq}(C)$	Scattering factors fr
	International Tab

 $= 0.405 \text{ e} \text{ Å}^{-3}$ $= -0.351 \text{ e} \text{ Å}^{-3}$ ction correction: none ring factors from rnational Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters (Å, °)

VN1	1.653 (4)	V—C9	2.236 (6)
V—C11	2.258 (2)	V-C10	2.246 (6)
V—C12	2.259 (2)	VC11	2.354 (5)
V—C7	2.351 (5)	V—Cpt	1.968 (6)
V—C8	2.263 (6)	• •	
N1—V—C11	99.72 (14)	CII - V - Cp	114.1 (8)
N1-V-C12	102.30 (14)	Cl2 - V - Cp	113.5 (8)
C11-V-C12	103.65 (6)	N1 - V - Cp	121.2 (7)
CI-NI-V	169.1 (4)	•	

† Cp is the centroid of the Cp ring.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1989). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL-Plus (Sheldrick, 1991). Software used to prepare material for publication: SHELXL93.

The authors would like to thank the EPSRC (MCWC and JMC) and BP Chemicals Ltd (MCWC) for financial support.

Lists of structure factors, anisotropic displacement parameters, atomic coordinates and complete geometry have been deposited with the IUCr (Reference: CF1112). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Becker, H., Häusler, H. J. & Preuss, F. (1987). Z. Naturforsch. Teil B, 42, 881-888.
- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Buijink, J.-K. F., Teuben, J.-H., Kooijman, H. & Spek, A. L. (1994). Örganometallics, 13, 2922-2924.
- Chan, M. C. W. (1995). PhD thesis, University of Durham, England.
- Lehmann, M. S. & Larsen, F. K. (1974). Acta Cryst. A30, 580-584. Mayer, J. M. & Nugent, W. A. (1988). In Metal-Ligand Multiple
- Bonds. New York: Wiley Interscience.
- Molecular Structure Corporation (1989). TEXSAN. Single Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1991). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

© 1997 International Union of Crystallography Printed in Great Britain - all rights reserved

Acta Cryst. (1997). C53, 204-206

Copper(II) and Nickel(II) Complexes of 4-Methyl-4,7-diazadecane-1,10-diamine

TIAN-HUEY LU,^a TAHIR H. TAHIROV,^a KELUN SHU^b AND CHUNG-SUN CHUNG^b

^aDepartment of Physics, National Tsing University, Hsinchu, Taiwan 30043, and ^bDepartment of Chemistry, National Tsing University, Hsinchu, Taiwan 30043

(Received 14 February 1994; accepted 13 May 1996)

Abstract

The X-ray crystal structures of (4-methyl-4,7-diazadecane-1,10-diamine-N, N', N'', N''')(perchlorato-O)copper(II) perchlorate, $[Cu(C_9H_{24}N_4)(ClO_4)]ClO_4$, and (4-methyl-4,7-diazadecane-1,10-diamine-N,N',N'',N''')nickel(II) diperchlorate, [Ni(C₉H₂₄N₄)](ClO₄)₂, are isomorphous with minor dissimilarities. The copper(II) complex is six-coordinate in a distorted octahedral geometry, with the four N atoms of the tetradentate ligand equatorial and the two O atoms of the perchlorate groups axial. The nickel(II) complex is four-coordinate in a square-planar geometry. In both complexes, the conformations of the three consecutive six-, five- and six-membered rings are chair, gauche and chair, respectively. In both crystals, hydrogen bonds involving the amino groups and perchlorate O atoms help stabilize the crystal structure.

Comment

The crystal structures of the copper(II) complex of N, N'-bis(3-aminopropyl)-1,2-ethanediamine and its associates have been reported previously (Lee et al., 1986; Tahirov, Lu, Shu & Chung, 1994a,b, 1995). In order to investigate the steric effects of N-alkyl groups on the structures of the copper(II) and nickel(II) complexes, we have studied the crystal structures of the title complexes (4-methyl-4, 7-diazadecane-1,10-diamine)(perchlorato-O)copper(II) perchlorate, (1), and (4-methyl-4,7-diazadecane-1,10-diamine)nickel(II) diperchlorate, (2).

The structure of the Ni^{ll} complex is isomorphous with that of the Cu^{II} complex with minor dissimilarities. Appreciable electron-density residues were observed in the penultimate difference Fourier map. The occupan-